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r TWO-WAY ANALYSIS OF VARIANCE FOR WEIBIJLL POPULATIONS

1.0 SINGLE CLASSIFICATION EXPERIMENTS

During Fiscal Year 1978 the work begun in 1977 on the analysis
of single classification experiments was brought to full fruition

- 
with the completion of a comprehensive (50 pages) report con-
taining theory , tables and worked examples of both the analysis
and design of single classification experiments with two-parameter
Weibull variates. The report has now been accepted for publication by
the Journal of Statistical Planning and Inference [1]. -

Extensive additional tables of the numerical values needed
for analyzing single classification Weibull experiments were
also computed. Approximately 35 hours of CPU time on SKF’s
IBM 370/158 computer were used in generating these tables.

A small number of sets have been reproduced together with the
report discussed above as an SKF publ ication and will be
available to qualified requestors. Copies have been sent

to the Rome Air Development Center for the use of the reliability
analysts headquartered at that site. Copies have also been dis-
tributed throughout the SKF world-wide organization with a cover
le t ter  c i t ing  the potent ia l  for savings in bearing testing that
follow from adoption of these methods .

The methods for analyzing single and crossed classification
experiments developed under this contract have been successfully
applied in other DOD sponsored work perfo rmed at SKF. For the
Navy , under contract N00019-76-C-0168 , we have examined alter-
native plans for endurance testing three varieties of silicon
nitri de material in rolling contact.
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For the Army , unde r Contract DAAK7 O- 77 -C - ,0034 we have compare d
the effect  of six types of grease on the endurance performance
of tapere d roller bearings .

In a .f u r t h e r  effo rt to disseminate our re sults , a presen-
tation was made to six s ta f f  members of the Reliability Branch
of Rome Air Deve) opment Center at Rome , N . Y .  on March 29 , 1978.
As a consequence of that meeting life test data on integrated
circuits we re comm4nicated to us by RADC/RB R for analysis.
The dat a we re found to have been collected in grouped fo rm rather
th an as indivi dua l fa i lure  time s and were not there fore amenab le
to the analysis de veloped unde r this contract .  A more l imited
nonparameter analysis was performed and communicated to RADC in

the form of a short report [2].

We have presented a talk based on the single classification
analysis entitled “The Comparative Power of the Likelihood Ratio
and a Shape Parameter Ratio Test for the Equality of Weibull
Scale Parameters” at the Joint Statistical Meetings in San Diego,
Calif. , on August 17, 1978. copy of the documentation dis-- 

- -

tributed at the meeting is given in Appendix i~j
Two important new areas of investigation have been opened

up during this contract year, name ly , 1) Weibull regression and
2) location parameter estimation and inference .

2.0 WEIBULL REGRESSION

The regression problem is applicable to situations where
life tests are conducted at each of several levels of a variable
arb i t ra r i ly  terme d a “stress” . In applicat ion s the “stress”
could be a voltage , temperature , load , etc. The Weibul l scale
parameter  or “character is t ic” l i fe  is assume d to vary inve rsely
~ith a power of the stress. 
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A numerical scheme has been developed for the jo int esti-
- - mation by the method of maximum likelihood of the Weibull shape

parameter and the s t ress - l i fe  exp onent.

The method has been implemented in a computer program
“REGSIM ” .to  pro duce , using Monte Carl o methods , the dis t r ibut i on
of the s ta t is t ical  quantities neede d for set t ing con fi den ce l imits
on the Weibul l shap e paramete r , the load-life exponent and a
fi xe d percentage point of the life distribution at any desire d
stress level. The stress levels at which inferences are to be
made may be outside the range of stresses at which life tests
were conducted. The results are thus applicable to the analysis
of “accelerated” tests , a common practice in the engineering and
physical sciences.

In addition to REGSIM a program called “REGEST” has been
developed to perfo rm estimation on sets of data taken at speci-
fied stress levels. A paper has been prepared entitled

“Inference in Weibull Regression ”. It contains theoretical details

and a full numerical illustration of the application of the

techniques. 
L~~

coPy is included as Appendix II.J

3.0 LOCATIO N PARA METER ESTIMATION AND INFEREN CE 
-

The Weibull location or threshold parameter is, in the life
testing context , the value prior to which failure cannot take
place. In ordnance applications the threshold parameter might
represent the time (after arming) before which a bomb cannot
explode .

It is important to be able to estimate and set a lower
bound for the location parameter based on a set of observations.
We have during the current contract year explored ahd found
feasible , a technique for estimating and setting lower bounds on
the Weibull scale parameter. A program called LOCEST was developed
to perform this analysis on a set of data. The program LOCSIM

11 develops , by Monte Carlo samp ling, the tabular data needed for
im plement in the ~.‘stimation procedure and opt ima l I)~ selecting

I ~ .
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Several production runs have been made using LOCSIM to try
to determine a rule for choosing the early order statistic at
which to make an estimate of the Weibull slope for best (most
powerful) detection of a non zero location parameter . The fifth
order statistic works best in a-li cases examined .
Below r1=5 overflow problems were encountered in the iterative
estimation routines caused by occasional large values of the
estimated shape parameter. We have incorporated the closed form
expression for the ML shape parameter estimate applicable when

censoring at the second failure. This permits trouble free
solution at ç=2 and confirms that there is an optimum value of

2. Thus the optimum r1 has been demonstrated to satisfy
2 < r1 

< S in all cases examined.

Null and non-null runs have now been made in which the
distribution of the test statistic for evaluating the location
parameter was determined with r1 5 for variou s sample sizes (n)
and censoring amounts (r), specifically: n=l0, r 6 ,7,8,9,l0, 

- .  
1

n~20, r 5 ,lO ,12 ,lS ,18,20, n=25 , r=l0,l4,l8,20,25, n 3 0 , r=10,l5, 
5 ;

20,25,30. . -

An additional set of runs was made with r1=2 and n=l0,
r=S ,3,6,7,8,10, n=l5, r=5 ,lO ,l1,12 ,l5.

This is sufficient information to warrant the preparation of
of a paper . This will be undertaken early in the next contract

year.

A summary of the software developed to date under this

contract follows.
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SOFTWARE SUMMARY

PROGRAM -

NAM E - FUNCTION
A .

WEIBEST Analyzes k sets of Weibul l data. Computes
individual shape parameters , 3 percentiles
and printer plot .  Calculates shap e para -

- 
- meter ratio test statistic , likelihood ratio

test statistic and ratio of largest to
smallest individual group shape parameter
estimates.

WEIBSIM Calculates critical values of SPR and LR
- test s tat ist ics  and distr ibutions for

interval estimation of percentiles and
shape parameter.

REGE ST Calculates exponent of power function rela-

- 
tion between scale parameter and stress ,
3 percentage points at each stress level

and the shape parameter.

REGSIM - Simulates the distribut ion of 5 pivotal
funct ions neede d for  se t t ing s ingle  and

• joint confidence intervals in Weibull
regression .

• FACSIM Calculates the distribution of functions
require d for testing sign ificance of row

and column effects in factorial experiment
with no interaction . 

-

LOCEST Calcul ates the test statistic for location
parameter and the median unbiased and lower

• 95% l imi t for location parameter .

LOCSIM Computes null distribut ion of shape para-

• meter estimates based on first r1 and r
orde r statistics in samples of size n.
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THE COMPARAT I VE POWER OF THE LIKE LIHOOD RATIO
AND A SHAPE PARAMETER RATIO TEST FOR THE 

- 

—

EQUALITY OF WEIBULL SCALE PARAMETERS 4. - I
John I. McCool , SKF Industries , Inc.

- -

. 
King of Prussia , PA 19406

1. INTRODUCTION 
-

We conside r k two-parameter Weibull populations ha.ving a common
shape parameter B and possibly different scale parameters 

~k 
The

CDF of the i-th population is written :

F(x)  = 1 - exp {- [x/ n~ ] 8 } (1)

Given samples of size n from each population , each type II censored
at the r-th failure , the maximum likelihood estimate of B when the
are presumed to differ , is the solution Bi of:

1~~ 1 k r 1 k n ~~ n ~~
- 

l B 1  + .-
~~~

- E Z logx~(J) 
- 

1~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 (2)

where Xj(j) is the j-th orde r statistic in the sample from the i-th
population .

The ML estimate of is
n B1

= Z x. - )
J 4 I B 1  (3)

i r . i~~~~)J=l

When the popula t ions  have a common scale parameter  
~~~~~~~~ the ML shape

parameter  es t imate  is the solut i on B0 of:

k n
1r Z x.(.~~logx.(.1 1 r . — l . — 1 ‘‘ ~~~~ 

1~~~J

/8~ + S S logx-~~..~ 
- 

1— 
~ A = 0 (4)

• i=l j =]. k n B
S S ~~~~~~~

The ML estimate of is

= 

~i~ 1 ~~ 
x~(J)lrk~ (5)
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2. TESTING EQUALITY OF SCALE PARAMETERS

We conside r two tests of the hypothesis H0:fl
~
=r
~0 

a shap e para-
meter ra t io  (SPR) test based on the ratio B 1/ 8o of the two shape parameter
estimates of Eqs. (2) and (4) and a test ba~ed on the likelihood ratio
A using as test statistic the monotonically transformed value -2logA
exp ressible as ,

A A

-2logA = 2rklog(81/~ 0) + 2 E ~ [log~ 
))B1 1og(~~~~~)~ °] (6)

i=i j=l llj

The distributions of both test statistics depend only upon n, r and k
un de r the null hypothesis.

Table 1 gives 90 and 95% points of Bi /Bo and -2logA determine d by
Monte Carlo sampling for various n, r and k with n ranging from 5 to 30
and k, from 2 to 10.

The degree to wh ich -2log A approaches the asymptotic x2 distribution

based on k-i degrees of freedom may be judged by their respective 95-th
percentiles , listed in- columns 7 and 8 of Table 1.

3. POWE R OF HYPOTHESIS TESTS - 

-

The power of the SPR test against various alternative s has been
found to depend only upon t~ie value of the symmetr ic  funct ion of the

k k 1
= S 1ogn~ [r~~/ Sri~ 

- 
i/k ]  

- 
(7)

i=l i=l

~~i is scale invariant. When the p1’s are equal , ~ = 0, and when the
are not all equal, 4~ >0. 

-

The power of the LR test depends on ~~ i an ’ another symmetric ,
scale invariant , postive function of the q1 ’s given by

k k
= S log [En~ / kr i~ ] 

- 
(8)

i=l i= 1• 
1

For equal $~~ 
the power of the LR test m~y be slight ly  infer ior  or

sli ghtly superior to the SPR test , depending upon the value of 4 2 .  In
general , SPR is best against a single aberrant i.e., when all ni ’s are
equal but one, and k>2 ; the LR test is superi or against more “di ffuse”

- alternatives in which several nj’s differ.

-5- 2..
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For fi xe d r the power of both tests , against the single aberrant
alternative , decreases with n and increases with k. -

Figure 1 shows , for k=2 and n=30 the value of the acceptance pro-
bability plotted for various r against ri~ (ri~=1.0). The SPR and LR
tests are indist inguishable to graphical accuracy . These va lues may
be used , for each r as a conservative approximation for the acceptance
probabilit ies against the sing le aberran t a l ternat ive , when k>2 and
n<30. 

. 

.

4. INTERVAL ESTIMATION OF THE SHAPE PARAMETER

The simulations that were used to find the critical values of the
SPR and LR tests also yielded the distributions of the function

V E ~~~~~i/B (9)

This distribution depends only on n , r and k. A lOO (1-a)% interval
estimate of 8 is obtained by inve rting the inequalities in the proba-
bility statement 

• - 

-

Pr [v
,,2 

< 8k/B < v1 1 2 ] = 1 - a (10)

For 90% confidence the interval is -

~~/v0 9 5  < B < 8 1/v 0 0 5  (11)

The ratio R of the upper to lower end of this interval is given by

R = v0 9 5 /v0 0 5  (12)

The quantity R may be used to characterize the precision within
which ~ has been determined by the k censored samples of size n.
Figure 1 shows some plots of R against censoring number for n=5 , 15
and 30 and with k=l and k=5. For a given value of r the precision
worsens with n. For fixed n precision improves with r. Considerab le
precision is gained , p a r t i cu la r ly  at low censoring numb e rs , if samples
can be pooled for estimating B, i.e., if k>l .

—
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1 ~ 
~~ INTE RVAL ESTIMATION OF A PERCENTILE OF ThE i-th POPULATION

The 100 p - th  perc entile of the i -t h  population is exp ressible in
terms of and 8 as

- x~ = [~ 1og(l~ p ) ] l
~’8 . 

~ ~13)

Its ML est imate is correspondingly

= [~log(l~ p ) ] 1h’81 . 

~i 
(14)

The function A

A X
U E B1log( Pi/Xp~) (15)

follows a distribution that depends on n, r and k only . In terms of
the S-th and 95-th percentiles of u, a 90% confidence interval for x~,
is calculable as

exp[-u0 951~ ] < x~ < • exp [-u0 051~ ] (16)

The ratio of the upper to lower ends of this confidence interval
is a random variable through its dependence on B. The B-th power of
the median value of this random variab le denoted may be expressed as

R~~
50 

= exp [(-u0 ~~ 
+ u0 9 5 ) / v 0 5 0 ] (17)

and may be used as a measure of the precision with which x~ has been
determined. 1

Figure 2 shows R~~50 for estimating the tenth percentile x010
of any population , as a function of censoring number for some n and k

values. Again , pooling of samples believe d to have a common shape
parameter  great ly  increases  the precision in the de terminat ion  of x0 1 0

- .
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-2l ogA ~

2 (k - l )

n r k 0.90 0.95 0.90 0.95 0.95

5 3 2 1.799 2.144 5.357 7.235 3.84 :.
S 3 3 1.788 2.078 7.913 10.24 5.99
5 - 3 4 1.769 2.009 10.29 12.80 7.81
5 3 5 1.744 1.925 12.34 15.07 A

3 10 1.644 1.747 — 21.78 24.88 16.9

5 5 2 1.259 1.366 3.794 5.290 3.84
5 5 3 1 .273 1.361 5.984 7 .804 5.99
5 5 4 1 .275 1.353 8.076 10.08 7.81
5 5 5 1.267 1.339 9 .843  12.10 9.49
5 5 10 - 1.246 1.284 17.94 20.72 16.9

10 5 2 1.36 3 1.508 4.142 5 .782  3.84
10 5 3 1.372 1.491 6.443 8.372 5.99
10 5 4 1.36 7 1.463 8 .467 10.51 7.81
10 5 5 1.365 1.438 10.39 12.45 9.49
10 5 10 1.328 1.378 18.84 21.58 16.9

10 10 2 1.105 1.150 
- 

3.165 4.472 3.84
10 10 3 1.116 1.149 5.317 6.834 5.99
10 10 4 1.115 

- 

1.142 6.981 8.706 7.81
10 10 5 1.114 1.139 8.755 10.55 9.49
10 10 10 1.105 1.121 16.16 18.61 16.9

15 5 . 2 1.374 1.535 4.090 5.770 3.84
15 - 5 3 1.392 1 .522 6 .393  8 . 4 2 8  5 .9 9
15 5 4 1.392 1.491 8.579 10.63 7.81
15 5 5 1.377 1.462 10.23 12.44 9.49

15 10 2 1.131 1.190 3.260 4 . 6 5 3  3.84
15 10 3 1.144 1.185 5.370 6 .846  5 .99
15 10 4 1.145 1.181 7 . 2 2 4  8 .962  7.81
15 10 5 1.143 1.176 8.881 10 .87  9 .49

15 
- 

15 2 1.066 1.096 - 3.101 4.436 3.84
15 15 3 1 .072  1.095 5.071 6 .562  5.99
15 15 4 1 .074 1.091 6 . 8 4 3  8 . 4 9 7  7.81
15 15 5 1.074 - 1.090 8.477 10.38 9.49

20 5 2 1.382 1.546 4.110 5.749 3.84
20 5 3 1.408 1.542 6.455 8.469 5.99
20 5 4 1.398 1.495 8.487 10.51 7.81
20 5 5 1.389 1.478 10.34 12.41 9.49

20 10 2 1.139 1.197 3.220 4.587 3.84
20 10 3 1.155 1.202 5.453 7.004 5.99 - -

20 10 4 1.155 1.195 7.233 9.120 7.81
20 10 5 1.155 1.190 9.068 11.01 9.49

20 15 2 1.079 1.112 3.088 4.297 3.84
20 15 3 1.087  1.115 5.102 6 .583 5 .99 -

~~ 
( -

~~ 20 15 4 1.088 1.111 6.862 8.591 7.81
20 15 5 1.089 1.108 8.603 10.56 9 .49

Table 1. 9 0 - t h  ~ 9 5 - t h  Percent i les  of •

and T I ~ Test  S t a t i s t i c s  .
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• -2logA ~
2 (k-1)

n r k 0.90 0.95 0.90 0.95 0.95

20 20 2 1.048 1.068 3.012 4 . 194 3.84
20 20 3 1.054 1.069 4 .986  6 .456  5.99 -

20 20 4 1.054 1.068 6 .740  8 .460  7.81
20 20 5 1.053 1.065 8 .42 8  10.23 9 .49 L
25 5 2 1.383 1.545 4 . 0 0 3  5.634 3.84
25 5 3 1.400 1.522 6 .365 8.142 5 .99
25 5 4 1.402 1.498 8.518 10.40 7.8 1
2 5 5 5 1.39 0 1.481 10.29 12.42 9 .49

25 10 2 1.143 1.199 3.211 4 .485  3.84
2 5 10 3 1.160 1.208 5 . 4 0 3  7 .038 5 .99
25 10 4 1.161 1.202 7 . 2 7 4  9 .0 7 4  7.81
25 10 5 1.158 1.191 8.872 10.83 9 . 4 9

25 15 2 1. 084 1.122 3.079 4 .465  3.84
25 15 3 1.094 1.123 5.116 6 .633  5 .99
25 15 4 1.096 1.123 - 6 . 9 9 2  8.885 7.81
25 15 5 1.095 1.117 8 .544  10.52 9 .49

25 20 2 1.056 1 .078 2 . 9 9 4  4 . 2 5 0  3.84
25 - 20 3 1.063 1.081 4 . 98 S . 6 .453  5.99
25 20 4 1.063 1.080 6 . 7 8 3  8 .448  7.81
25 20 5 1.062 1 .077  8.212 10.15 9 . 4 9

25 25 2 1.037 1.054 2 .9 4 5  4 .210  3.84
25 25 3 1.042  1 .054 4 . 8 9 4  6 .450  5 .99
25 25 4 1 .042 1.053 6.6 16 8.330 7.81
25 25 5 1.041 1.051 8 .122 9 .919 9 . 4 9

30 5 2 1.394 1.571 4.111 5 .852  3.84
30 5 3 -  1.414 1.544 6 .489  8.396 5 .99
30 5 4 1.411 1.529 8 .601 10.83 7.81
30 5 5 - l .39~ 1 .492  10.37 12.67 9. 49

30 10 2 1.148 1.212 3.259 4 . 7 0 4  3.84
30 10 3 1. 165 1.215 5 .45 2  7 .200  5.99
30 10 4 1.167 1.206  7 . 4 0 2  9. 171 7.81
30 10 5 1.165 1.199 9 . 071  11.03 9.49

30 15 2 1.087  1.124 3.033 4.31 7 3. 84
30 15 3 1.096 1.125 5 .04 6  6 .549  5.99
30 15 4 1.099 1.125 6 . 9 6 7  8 .663 7.81 -

30 15 5 1.098 1.121 8 .58 8 10.51 9 .49

30 2 0 2 1.059 1.083 2 . 9 2 1  4 .167  3.84
30 20 3 1.065 1.084 4 . 8 4 4  6 . 2 5 6 5.99
30 20 4 1.067 1.084 6 .687  8 .4 0 S 7.81
30 20 5 1.~~67 1.082  8.36 1 10.17 9 •49

I - 30 25 2 1 .044 1.061 2 .9 56  4.116 3.84
30 2 5 3 1 .047  1.061 4 . 7 5 3  6.168 5.99
30 25 4 1.048 1.060 6.562 8.082 7.81
30 25 5 1.048 1.058 8.128 9.886 9.49

- 
-

- I - Table  1 ( C o n t i n u e d )
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-2 l ogA ~
2 (k-1)

n r k 0.90 0 .95 0.90 0.95 . 0.95

30 30 2 1.031 1.044 2. 890 4 .025  3.84
30 30 3 1.035 1.044 4 .765  - 6 . 192 5.99
30 30 4 1.035 1.044 6.511 8.123 7.81
30 30 5 1.035 1.042 8.121 9.938 9.49 A

- Table 1 ( Continue d)
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INFER ENCE IN WEIB ULL RE GRE SSION
A

ABS TRAC T

We consider an experimental situation- in which a re sponse
variabl e follows a two-parameter  Weibull di-stribution having a
scale parameter that varies inversely with a power of a deter-
ministic , externally controlled , variable generically termed a
“stress”. The shape parameter is presumed to be invariant with
stress.  Equations are formed , from the results  of type II  cen-
sored Life tests conducted at each of several stresses, whose
solut ion y i e l d  the maximum likelihood estimates of the common
shape parameter , the stress-life exponent , and a general percen-
tile of the life distribution applicable at an arbitrary stress
level.  A numerical scheme for solving the equations is given .

Pivotal functions of the ML estimates are found whereby

interval and median unbi-ased point estimates may be calculated
once the distribut ion of the pivotal functions is found by
Monte Carlo sampling . A numerical example of the calculation of

point and interval estimates is given . The precision with which

the shape parameter is estimated by testing at several stresses
is comparable to the precision applicable to a single test of
the same total sample size . The precision in estimating percen-
tiles is a maximum near the middle of the stress range at which

testing was performed and is , at that point , comparable to the

precision obtained in a single stress test of the same total

sample sjze.

____ 
-
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INFERENCE IN WEI BULL REGRESSION -

1. INTRODUCTION AND SUMMARY

The conduct of life tests at more than one level of an environ-
mental factor known to affect the parameters of the life distri-
bution is a common practice. Ordinarily, the environmental fac-
tor is set at higher levels of intensity than the test item will
meet in service , in order to shorten the expected time to failure.
The life test results obtained at these levels are then extra-
polated to more usual levels of the environmental factor by
fitting constants to a theoretical or empirical relation between

I - the factor levels and one or more pa rameters of the life distri-
bution . (It is usual to assume the form of the life distribu-

tion is not al tered by the level of the environmental factor.)

Life testing having these aims , has come to be called accelera ted
life testing and an extensive literature on the subject has
developed , primarily in connection with the testing of electronic

- components. The environmental or accelerating factor is -

customarily called stress , but may actual ly  be vol tage , load ,
temperature , etc.

The work described in th i s  paper is applicable to the analysis
a -  censored accelerated life tests in which i) a two parameter
Weibull distribution governs at each stress and ii) the Weibul l
scale parameter varies inversely with a power of the stress while

iii) the shape parameter is invariant with stress.

The primary aims of the present work are to find point and
interval estima tors of i) a quantile of the life distribution
a t a specified str e ss , ii) the Weibull shape parameter and

t iii) the exponent of the stress-life model based upon the
method of maximum likelihood. These aims are analogous to the
traditional aims of regression anal)sis.

1
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Singpurwalla [1] has considered the case where the lives follow
the single parameter exponential  d i s t r ibu t ion  with  the scale
parameter varying inversely with a power of the stress and
where the data at each stress level is censored. He derives
the maximum likelihood (ML) estimates of the stress-life
exponent and the constant of proportionality of the stress-
life law . He uses asymptotic theory for setting confidence
l imi t s  on these parameters .

Nelson [2] treats the two parameter Weibull case but estimates
the parameters  separately  at each s tress.  He then es t imates
the common shape parameter as a weighted combination of the
individual shape parameter  e s t i m a t e s  and the s t r e s s - l i f e  .

exponent and proportionality constant by weighted least squares
using the logarithmically transformed stress values as the

independent variable.

In [3] Singpurwalla  and A l - K ha y y al  under the same assumptions as [2)
consider the direct use of the method of maximum likelihood

to estimate the common shape parameter and the stress-life
exponent and constant and find the asymptotic covariance
matrix of the estimators for the uncensored case.

In a numerical example they calculate these estimates by direct

maximization of the likelihood function using SUMT.

In Section 2 of the present paper , the ML e s t i m a t i o n  equat ions
are derived for the jo in t  e s t ima t i on  of the two parameters  of
the stress-life law and a general quantilc of the life distri-

but ion at a rb i t r a ry  s t ress  S for the case where n~ i t cm 3 a rc

2 
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tested at each of k stress levels S1.. .Sk and testing continues
to the occurrence of the r~-th failure at each stress.

In Section 3, the ML equations derived in Section 2 are tested -

to determine whether they reduce to the ordinary equations when
a single stress level is employed and whether the estimates are
properly invariant when the units of the stress scale are
changed.

Section 4 contains the derivation of pivotal functions which ,
given their distributions for specific sample sizes,wIll permit
bias correction of , and the setting of confidence limits on,
1) a general quantile of the life distribution at stress 5,
2) the Weibull shape parameter and 3) the stress-life exponent.

Section 5 contain s the description o a scheme found to be
effective for the numerical solution of the likelihood equations
and briefly describes a computer program for the Monte Carlo
calculation of the dist r ibution of the pivo tal functions

derived in Section 4.

Section 6 is a numerical example of the analysis of a set of

rolling contact fatigue data obtained at four levels of the
contact s t r e ss .

2.  PROBLEM FOR MULATION AND DERIVAT I ON OF ESTIMATORS

We consider-a series of life tests in which a sample is tested
at each of k stress levels.  We suppose that  for  i = 1.. .k , - 

-

n~ specimens are subjected to stress Si and run until the
occurrence of the first r1 failures.

__________ . - - . - - -—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
-- ~~~)~~ _ s--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



It is assumed that under stress S~ the time-to-failure of the
test item is a two-parameter Weibull random variable having a
scale parameter 

~~ 
and a stress-independent shape parameter 8.

That is , the cumulative distribution function of the life at
stress S~ is expressible as

Prob[ l i fe  < x f  S=S~) = 1 - e x p [ -( x/ ~ 1) 8] (1)

The scale parameter n1 is assumed to vary inversely with the
y-th power of the stress S~ , i.e. as:

= no ~~~ (2)

where no is a constan t representing the scale parameter at unity
stress.

We denote by X i (j )  the j - t h  ordered life achieved at stress S~
with Xi(ri) = X i ( ri ) 

= X i ( f l ) .

Given the resu l t s  of such a l i f e  tes t , we wish to form the
maximum l ike l ihood  (ML) e s t ima tes  of the parameters  n~~, 8 and
1. -

The logarithm of the likelihood function written for all k
samples is found to have the form -

k k r~
logL = logc + log ~ Z r1 + (8-1)  Z E log X . ( . - ~ (3)

i=l i=l j=l

k k ~~i

-8 ~ r~ log ri~ - E [x 1(.)/n 1]
8

i=1 i=l j = l  ‘-
~~

— 

4
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Equating to zero the derivative of logL with respect to
gives the fol lowing equa tion which mus t be sati s f ied  by the ML
estimates n0, ~ and y .

3logL 
= -8/ne i=l 

r~ 
+ i (j ) 8 0 (4)

i=l j=l Si

The solu t ion for in terms of y and 8 is :

= ~~ (~~~}~~~~~} ‘~~~ r j~ 
‘/~ (5)

i=l ~=l Si 
i=l

When n~ = n and r~ = r for all i this equation specializes to:

A k n x . . 
~~ 1/8

= (
~-~- Z 

~ 
( ) } (6)

i~ 1 j— 1 S
~

Differen tiating Eq. (3) with respect to y and substituting

from Eq. (5) g ives :
fl. Ak k i

k E r
~ 

E S
~~

8 logS1 ~ 
[x i(j)]

8

aiogL 
= 

~~ r~iogs~ 
- 

i=l 
k H i =0 (7)

i—l 
i~ l 

s~ ’8 
~ 

[x i( j) ]

For r 1 = r , n .~ = n , Eq.  (7) reduces to:

k A~~~ fl

k k E S.~~ logS. 1 [x 1 . ]-

___  = E logS 1 
- - ,~~.

.. 
1 = 0 (8)

i — i
in j=l

.Ij - 5 - 

-

-- 

~~~~~~~~~~~~ ~~~~T~~~~J:: :~~~~~~~:T-~~ 
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F i n a l l y ,  differentiating Eq. (3) with respect to 8 and using - -

Eqs. (5) and (7) leads , af ter considerable s impl i f ication , to
-the expression :

A A  fl~ A

+ 
! i 

l0~~~~
j(j 

— 111 
~~~~~~~~~~~~~~~~~~~ 

:~ lo~x~~(J) 
= 

- 

(9)

mnl ~
- m l  ~ i ( j )

For r~ = r and n~ = n , Eq. (9) spec ia l i zes  to:

k A A  A

k r .
•~~ 

S~~~~•
E X~~ ( J )  

lOgx 1(J)
1 1 . I I logx . . - k 

1 
= 0 (10)

ik m l  j=l i ( j )  
~ ~ x~1=1 ‘ ~=i 

iU)

Following the simultaneous solution of Eqs. (7) arid (9) for
8 and I one nay evaluate n o from Eq. ( 5 ) .  The ML e s t ima te  of

is obta ined us ing  Eq.  (2 )  and the fac t  tha t  ML e s t ima te s  of
func tions of parame ter s are ju s t those func tion s of the ML
es t imates , i . e .

A -
A A -
n - n  S 1 11i 0 i 

-

The p-th quantile of the life distribution under stress S~ may
be estimated as: -

A 1 1/8 A

x~, = [log 
~r- -j~

-
~ 

n 1 (12) 
- 

- 

-

3. CHECKING THE VALIDITY OF THE EQUATIONS .. H
As a check on the reasonableness of the likelihood equations

given above we cons ider the special case in which all testing -

is at a sin gle st ress , i .e. S~ = S (all i). In this case

- 6
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the stress-life exponent y should be unestimable and the equa-

tions for estimating ~ and n~~ 
should reduce to the expression

known to apply when a single sample is considered..

- From Eq. (8) with S1 
= S one has: 

-

k n A

kS~
8 logS I E - x ~

klogS - 
k ~~ 

A = 0 (13)

I ~ X~ .

i=l j=1 ~‘(3)

which reduces to:

k lo g S  - k l o g S 0

i. e . ,  the equation is satisfied for any value of y.

Eq. (10) with Si 
= S becom es:

A A k  
~~ 

A

~ x 8 1o~ x
1 1 k r m l  =i i( j) b i(j)
-
~~

- + j~~ .
~~1 

• -
~1 

logX~~(J) 
-

- k 
3
n A = 0 (14)

8 1 ~ s1 ~ ~ x .

i=l j=l ‘U)

The es t imate  of n o become s , from Eq.  ( 6 ) :

= ~
1 

{
~~~~~ 

i~ 1 ~ 

X j•(J)
} I (15)

The estimate of n~ , the W eibu l l  scale parame ter at stress S using
Eq. (11) then becomes:

1 — 
~ i 

= 
~~~~~ 

i=l 
X~~~~

J )
}
1’

~~ 
(16)

I 

u
- 

7

t~
i 

- 

- 
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Eqs. (14) and (16) are seen to be equivalent to the ML equations
for es t ima t ing  n and 8 from a single sample of size kn having
rk fa i lu res  (cf .  Cohen [ 4 ] ) .

Another check for  reasonableness of the equat ions can be made
by v i r tue  of the fact  that the estimates of 8 , Y and should
be invariant with respect to a change in scale of the stress
e .g .  the es t imates  should not be a f fec ted  if the units in
which s t ress  is measured are changed from English to metric.

To test whether this is true , introduce a scale change

= cS1 (17)

where c is a constant and is a multiplicatively transformed
value of S..

1

Substituting s~ = into Eq. (8) gives:

k a .  y 8 n
k k E ( E

2.) [logo . - logc ]
I loga~ 

- klogc - —
~~~~~~ 

~1 
A =0 (18)

i=l 
i~ l 
(E
2)18 

j=l

which becomes:

L 

k
k k E  ci~~

8 logo~ 
- 

. - -

I loga~ 
- k logc - 

i— + k logc = 0 (19)
i=l I ~~

18 I X~~
i=l ~ 3=1 ‘ C~~~~ - - 5  -

Substituting S1 
= at/c into Eq. (10) gives : 

-5

L
- t  8

- r  L
-- -__ _ -~~~~~~~~~ 

-

-
- 
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A A  1 A A  A
£

1 1 k r (1/ c1 )
~~~1

0i
Y 

.E
1
x~~(J)

]0~ x~~(J)
+ 

~k I I logx.(.\ - 
~~~~ 1- “-‘ A = 0 (20)

8 i=l ~=l Q Q fl
- (l/c1

~ ) I a .1~’ I x . 1 .
i=l 1 j=l ‘U)

Eqs. (19) and (20) are identical to Eqs. (8) and (10) respectively
except that 0~ replaces ~~ A 

the simultaneous solution of
Eqs. (8) and (10) for I and 8 is invariant with respect to a
scale change in the stresses.

The solution for no using Si 
= O f/c becomes from Eq. (6)

A k n x . A A 

-

n = c 1{
~ k 

I I ( 
1~ 3) )8)1~

’~ (21)
j =1 j=i. ~~ . 

.

1

Eq. (11) then becomes:

A k n x A A

A c~~ {-~-~ I I (-~-Ui~)
8)~~ (22)

~ 
r j l  ~~~~~~ a . I

Again , Eq. (22)  i s iden t ica l  to Eq. (11) wi th  o~ re placing S~~, -

so tha t  the ML e s t ima t e  of n~ is unaltered by a scale change

in s t ress .

4. PIVOTAL FUNCTIONS

It  is possible to draw in fe rences , i.e. set confidence inter-

vals  and make hypothesis tests for a parameter if one can

r-~ 
determine  a func t ion  of the parameter  and i t s  e s t i m a t e  tha t
follows a distribution that depends on sample si:e but not

9 
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upon that parameter or any other parameters of the d is t r ibut ion .
Such functions are designated pivotal functions and have been
found for the shape parameter and a general quant i le  in the
single sample case of the two parameter Weibull distribution
[cf.  McCool ( 5 ) ] .

In searching for pivotal functions for the present problem we

use the strategy employed in [5] of expressing a Weibull random
variable in terms of its population parameters and a rectangular
variable.- When this is done the order statistic X 1( j )  t ransforms
to

X
1U)  

= fl j {-logu~~ }
l/8 

(23)

where the var iab les  u j~ f ollow beta d is t r ibut ions  wi th  parameters
that depend on sample size but not upon n 1 or 8

For simplicity we hereafter restrict attention to the special
case of constant sample size in which n~ = n and r 1 = r. The
results apply to the unequal sample size case as well.

Substituting Eq. (23) into Eq. (8) and using (2) results , after

some simplification , in the equation :

k k E  S~~~11)logs. 
.~~ 

{~ 1ogu~~}
8
~~

I logS. - 
i—l -- A 

3— 1 = 0 (24)
I s~

8(Y Y) I {- logu .  ~ 
8/8 .

i - i  j = l  13

].0 -

-~ —~~~~~~~~~~~~~~~~~~~ - --  ~~--~~~~~~~~-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- - .~ - ~~~- 
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Substi tut ing Eq. (23) into Eq. (10) and using Eq. (24)  lead s to:

k r ~ s~~~~ 1){ 1ogu 1.i ~~~81og 1og(l/u~ .)

~~~ .
~~ ~~~~~~~~~~~~~~~~~ 

~~
- - 0 (25)

8 i— 1~i — l  I I ~~~~~~~ [~~1o g u . . ) 8’8
i= lj= l  1 ‘3

If one now wri tes  8(y - y )  as (8/ 8) (y - y ) 8 it is seen that  for a
given set of u3~ Eqs. (24) and (25) can be solved simultaneously
for the quantities q~ 8/6 and SE (y-y)f3 - In repeated sampling
i.e. different sets of u13 , these quantities will vary in a
manner that depends only on k, r and n.

If for specified values of k, r and n repeated Monte -Carlo
samples were drawn from a two parameter Weibull population
having say 8 = 1.0 and y = 0, one could empirically determine

as closely as desired the distribution of 8 and hence of q and
the distribution of y and hence of s.

Denoting the 100 o-th percentage point of the distribution of q
by q~ (r ,n ,k), one may invert the probability inequality:

~ [q o~ 0s (r , n ,k) < 8/B < q0 9 5  (r ,n,k ) ]  = 0.90 (26)

to ob ta in  a 90% confidence i n t e rv a l  for  B as :

— 

8/q~~95 (r ,n,k) < B < 8/q005 (r ,n,k) (27)

A median unbiased estimate of 8 would be:

H = 
~/q 0 5 0  (r , n , k) (28)

[ 11
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As proposed in [6] the ratio R of the upper to lower ends of a
confidence interval on the shape parameter is a useful measure
of the precision with which the shape parameter is determined
in a sample of given size.

Arbitrari ly using a 90% interval it follows from Eq. (27)  tha t

R = q095 /q005 (29)

For setting confidence intervals on y it is noted that since
the random variables s and q are distributed independently of
the Weibull parameters , so is their product w~ s q,  i. e.

= (y-i)8 8/8  = (y-y)B (30)

Thus from the distribution of w *(r ,n ,k) one may set a 90%
confidence interval for y as:

A 

~~~~~ 

(r,n,k) A 1 05 (r,n ,k)
A A 

- (31)
8 8

A median unbiased estimate of I is calculable as:

A A w~ 50 (r ,n,k)
I’ = I - —

. 
A (32)
8

- 
- 

A convenient measure of the precis ion of determination for

I is the median length  L 0 50 of a (say) 90% confidence interval.

From Eq. (35) and the definition of q, L 0 5 0  may be c a l c u l a t e d
as:

*. *

L 0 50 = 
• 

(33)
. ~~q050

12

,--~ - - ~~~~~~~ ~~~~~~~~~~~ - -5 — -~ 
--5— —

— --—-~-- - -~~~-5.~ - ----=— ---— . 
~~~~~~~~~~~~~~~~~~~~ 



-- --- - - - - - 
_ _

L050 depends on the sample size parameters , i.e. Ic, n and r
and also on the true but unknown value of the shape parameter
8.

The ratio of L050 values for various sample size choices is
however independent of 8. -

Substi tuting Eq. (23) into Eq. (6) and using Eqs. (11) and
(12) gives the following expression for x1,~ in terms of the U

13
.

xpj  = si~ ~~ 
~~ ~=l 

S~~ 11) { ~~~~~~~~~~~~~~~ (34)

where k~ 1og( 1~~.) (35)

The population value of x~ 1 i s :

x
v

-. = k~~ ”~ S 1n 0 .(36)

Dividing Eq. (34) by Eq. (36) and raising both sides to the
8- - -th powe r g ives :  -

~ 1- 8 / 8 A A A A A

S~~~
II) 

~~ ~ s~~~~
1) -C~ log u~ .} 8h1’8 (37)

~~1 i=l  j = l

The right hand side of Eq. (37) involves only the u1~ and the
pivotal functions q and w* and thus the function on the left
side of Eq. (37)  or its logarithm is a pivotal function .

( I
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Defin ing
A

A X~~
u~ ( r n ,k,p) = 8 log 1~P~11 (38)

pi

one can , given the percentage points of u’~, set confidence
limits on ~~~ Two sided 90% confidence limits would have the
form :

exp [-u~~951~] 
< ~~~ < • exp [-u~~051~] (39)

A median unbiased es t imate  of may be calculated as :

x
~~~ m 

= • exp [-u ~~ 501 ] (40)

It should be noted that all of the foregoing applies even when

the stress at which it is desired to estimate x~ is not one

of the stresses at which life tests are run . Confidence limits

and median unbiased point estimates can be calculated for any
stress within or without the range of stresses encompassed by

l i fe  tes ts .

A measure proposed in [6] of the precision with  which ~~ is

determ ined is the median ratio R0 5 0  of the uppe r to lower

ends of its confidence interval. Choosing a 90% interval this
ratio becouies, from (39)

• 
- u A r + u~ 

-

= exp [ “ ‘  U~~ ] (4 1)
~ q 0 5 0

•
I t

wherein the median value of B is expressed as the product 8q0 50.
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5. NUMERICAL SOLUTION OF THE ML EQUATIONS

The solution of Eqs. (9) and (7) by means of a general nonlinear
equation solver routine that computes derivatives using finite
differences , was found to be slow and unreliably convergent.

The ad hoc solution scheme described below was found to be
quite fast  and dependable.

Using the transformation

~~5
Y • 

42yj • — X i (j )  -

Eq. (9) reduces to -

r .  fl A fl A
A k 1 k k 1 k

1/8 + I I logy..! I r. - I I y~~. logy..! I I y
~~
.

i=l j= l  13 i=l 1 i=l j=1 ~ ~ i=l j=l 13

(43)
f l .  A fl~~ A

A k  1 ~ k 1
8 

A k  k
+ I I I y

~j 
logS1! I I 

~I 
I rj1ogS~/1~ 0

1 1  3 1 i=l  j 1  i=l ’

while Eq. (7) becomes
Ic k

k 
~~~~~~~ 

r 1 
~~~~~~ 

.
~ :i 

) jj logS.
I r .log S. - 

1 3- = 0 (44)
i=1 1 1 k l i i  A

I I
i=l j=l

When Eq. (44) is satisfied the last two terms of Eq. (43) are
also sa t i s f i ed . The r emain ing  terms of Eq. (42 )  are recognized
as the terms tha t  must  sum to zero when e s t imat ing  the Weibull[ shape parameter from k type II censored data groups with

15
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representin g the j-th ordered observation in the i-th group
(cf. [ 7 ] ) .  For a given set of ~~~ the- solution of these
equations for 8 is readily accomplished by the Newton-Rap hson
method.

From this observation the following approach to the simultaneous
solution of Eqs. (48) and (49) suggests itself:

1) Guess a value of y =

2) Transform the data to y~~ using I = Y in Eq. (47)

3) Solve for 6 =8 ~~~ from the first three terms of Eq. (48)
using 

~~~ ] .J A  

)7
( O)  

-

4) Use 810’and y~ °~jn Eq. (49) and solve for an improved
y =y ~ using the Newton - Raphson method .  

A

5) Repeat steps (1)-(4), i tera tively replacing y by the
latest value emerg ing f rom step ( 4 ) ,  un t i l  successive
y and B estimates do not differ by more than a
prescribed amoun t .

This procedure was incorporated into a simulation program
written in Fortran IV , that generates 10 000 realizations of
a random experiment in which k samples of size n are tested at

each of k stresses s1~ S~~.. . Sk until the first r failures
occur.

The failure lives follow a two parameter Weibull distribution

with shape parameter 8 = 1.0 and with a p-th percentile value
x
1,~ 

at stress S~~( iE 1 . . . k ) .

The input data consis ts  of the values n , r, k ,S1 (i=l ,k) , p
and x . (i=1 ,k) and the values of three additional stresses

~~1 -

Sk+l, Sk+2... Sm at which it is of interest to calculate

~~1 

-5 
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By set t ing x~ j~ constant  for all  i one simulates the case where
the stress-life exponent has the value y = 0 .

The program calculates y, 6 and x~ j (i~ l , . . . k + m )  for each
realization and compiles , for specified functions of these
observations , their  empirical d is t r ibut ion  over 10 000 simulated
realizations of the experiment.

6. NU MERICAL EXAMPLE

The following data are the ordered times to failure in rolling
contact fatigue of ten hardened steel specimens tested at
each of four  values of the contact stress.

Stress
106 -p si Ord er ed Lives

0.87 1.67 , 2.20 , 2.51 , 3.00 , 3.90 , 4.70 , 7.53 , 14.70 ,
2 7 . 7 6 , 37 .4

0 .99  0 . 8 0 , 1.00 , 1.37 , 2 . 2 5 , 2 . 9 5 , 3 .70 , 6 . 0 7 , 6 .65 ,
7 . 0 5 , 7 .37

1.09 0.012 , 0.18 , 0 . 2 0 , 0 . 2 4 , 0 . 2 6 , 0 .32 , 0 . 3 2 , 0 . 4 2 ,
0 . 4 4 , 0.88

1.18 0 . 0 7 3 , 0 .098 , 0. 117 , 0.135 , 0. 175 , 0 .2 6 2 , 0 . 2 7 0 ,
0 .350 , 0 .386 , 0 . 4 5 6

Rolling contact fatigue data of this type are customarily treated
as samples from two-parameter Weibull population s having a
scale parameter  tha t  va r i e s  inverse ly  w i t h  a power of the
contact stress and a shape parameter that is invariant with
stress [cf. Lieblein and Zelen (8)].

17

4.

-5—.- -5 - ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- --



-- -

For the most part these assumptions appear to be satisfied by
the present data .  Probabi l i ty  plots suggest however that the
first failure at the stress S = 1.09 is an outlier and that
at S = 0.87 a three parameter  Weibull  model wi th  a location
parameter of about 1.50 is indicated.

For expository purposes we nonetheless accept the two-parameter
Weibull model as adequately representing the data.

To test the constant shape parameter assumption we calculate
the raw ML shape parameter  e s t i m a t e s  for each sample , obtaining
the values listed below :

Stress (106 psi) 0.87 0.99 1.09 1.18

ML Shape Parameter Est. 0.953 1.57 1.43 1.96

Following [9] we employ as test statistic the ratio 1.96/0.953 =

2.06 of the extremal shape parameter estimates.

From values  tabled in [9] we f ind tha t  for k = 4 , n = r = 10 ,
the 90-th percentile of the null distribution of the extremal
shape parameter ratio is (6max / B niin)ø g ø  = 2 . 4 7 .  Since 2.06<2.47
there is no reason to r e j e c t  the hypo thesi s  of a common shape
parameter.

Proceeding then , we calculate the j o i n t  ML estimates of the
stress-life exponent y~ and the common shape parameter B from t

Eqs.  (8) and (10) to be :  ii
y = 13.89 

-5

= 1.166

- 
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Addi t ional ly  we calculate the ML estimate B ~ of the common
shape parameter 6 that applies when the are not constrained
in any way (c f .  [7]) with the result B = 1.343.

The estimate 6~~ is closer to the average of the four individual
ML estimates tabled above than is the estimate 8 = 1.166 that
results when the scale parameters are constrained to vary with
an inverse power of stress. This suggests some lack-of-fit to
the inverse powe r law.

The ML tenth percentile estimates at the four stresses are
as follows : -

Stress (106 psi) 0.87 0.99 1.09 1.18
powe r law 2 . 2 0 9  0 . 3 6 7 2  0 .0965  0 .032 1

0.10 u n c o n s t r a i n e d  2 . 3 2 8  0 . 7 8 6 2  0 .0 6 5 6  0 .0 4 5 7

The simulation program was run with n = r = 10, k = 4 and S1 
=

0.87, S2 = 0 .99 , S3 = 1.09 , S4 = 1.18 and the additional value
S5 = 0 . 7 5 .  The d i s t r i b u t i o n s  were ca lcu la ted  fo r  q,  w~~, and
the u~ applicable at each S~ . The 5-th , 50-th and
95- th percen ti les of these random var iables  ar e l is ted in
Table 1.

Using these tab led  values  one ca l cu l a t e s  f rom Eq. ( 2 7 )  the 90%
conf idence  in terval  • -

0.913 = 1.166/1.277 < 6 <1.166/0.8459 = 1.378

From Eq. (28)  a median  unb ia sed  e s t i m a t e  of the shape parameter

A

6’ = 1 .166/ 1 .024  = 1.139
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From Eq. (29)  the precision measure R is calculated as

R 1 . 2 7 7  1 510 . 8 4 5 9

This value is in good agreement wi th the value calculated for a ~
-

single uncensored sample of s ize n = 40 , indicating that there
is a neglig ible loss in precision for estimating 8 by conducting
tes ts at four stresses ra ther than a t only one. 

-

From Eq. (31) a 90% confidence interval for the stress-life

parameter  is calculated to be

11.92 = 13.889 - 2.293/1.166 <1< 13.889 + -

2.433/1.166 = 15.98 - .

A median  unb ia sed  e s t i m a t e  of -y is f rom Eq. (32)  
-

I ’ = 13.889 + .3783/1.166 = 14.21 
- .

From Eq. (33) the p roduc t  of B and the prec is ion  measure  L0 5 0

B 2 . 2 9 3  + 2.433 — 4 62L 0 5 0  1.oz~~ 
- 

- 
• -

Using Eqs.  (39) , (40)  and (41) y i elds the fo l lowing  values of
the median unbiased  e s t i m a t e s  and 90 % conf idence  l i m i t s  for

i = 1, . .  .5 .  Also  l i s t ed  for  each stress are the values -

of the precis ion measure ~~ F
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90% Confidence Interval
Median Unbiased x

0 ~~~ 

-

Stress 
~O. lO Estimate Lower Upper ~g 50

0.75 - 16.55 - 7.22 38.4 6.70
0.87 2.13 1.09 3.86 4.21
0.99 0.358 0.193 0.572 3.42
1.09 0.094 0.050 0.152 3.55
1.18 0 .03 1 0.016 0 .054 4 .03

Figure 1 shows on logarithmic scales the straight line that joins
the raw estimates of x010 plotted against stress along with
the bands formed by the upper and lower confidence limits cal-

cula ted at each s t r ess .

Also shown are the ~~ e s t i m a t e s  of x 0 1 0  at the four stresses
at which da ta  were taken computed under the assumpt ion  of a
common shape parame ter bu t wi th no cons t ra in t  on the var iat ion
of x 0 1 0  wi th  s t ress  and t h e i r  associated 90 % conf idence inter-
vals .

The lower confidence limit for the uncontrained estimate at S2 = 
-

0.99 just touches the line fitted under the power law constraint.
This confirms the indication of lack of f i t  to the p ower law -

model suggested by the comparison of the constrained and un-

const ra ined shape parame ter es t ima tes discussed ear l ier .

Fig. (2) is a plot of R~~ 50 against stress level. Fig. (2)

i l lustrates how R~~ 50 is a minimum near the mid poin t of the
stress range , increasing substantially when extrapolating to
stresses outside the range of the tests.

- 
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The value of R~~ 50 for a single test of size n =r = 40 was
found by simulation to be R~~ 50 = 3.4 1. This compares favorably
with the minimum value shown on Fig. 2. This indicates that if L

high precision is required at some specif ic  stress level a
negl ig ible  loss in p L e c is i~~n is suf fe red  if , ra the r  than con-
ducting all tests at this stress level , some specimens are tested
at surrounding stress levels. Plots l ike Fig.  (2)  can be
constructed in advance of any actual tes t ing  to determine the
choice of stress levels , the number of levels and the sample
sizes that yield a precision “profile” that the experimenter finds
suitable. In addition as noted previously the sample size and
censoring number can differ at each stress level.

H
El
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TABLE 1

L
Percentiles of Pivotal Functions

k = 4 , n = r = lO
S1=0.87, S2=0.99 , S~=l.09 , S4=l.l8

.05 0.50 0.95

q = B/B 0.8459 1.024 1.277

w~ = (y-y) B -2.433 -0.3783 2.293

u* = Blog [x010 /x010 ] ;

S = 0.75 -0.9238 0.0555 1.023

S = S1 = 0.87 -0.6495 0.0441 0.8209

S = S2 = 0 . 9 9  - 0 . 5 1 7 0  0 . 0 3 0 5  0 .7 5 2 0

S = S3 = 1.09 -0.5309 0.0318 0.7671

S = S4 = 1.18 -0.6079 0.0396 0.8193 ~~
-
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